The Gromov-witten Potential Associated to a Tcft

نویسنده

  • KEVIN COSTELLO
چکیده

This is the sequel to my preprint“TCFTs and Calabi-Yau categories”. Here we extend the results of that paper to construct, for certain Calabi-Yau A∞ categories, something playing the role of the Gromov-Witten potential. This is a state in the Fock space associated to periodic cyclic homology, which is a symplectic vector space. Applying this to a suitable A∞ version of the derived category of sheaves on a Calabi-Yau yields the B model potential, at all genera. The construction doesn’t go via the Deligne-Mumford spaces, but instead uses the Batalin-Vilkovisky algebra constructed from the uncompactified moduli spaces of curves by Sen and Zwiebach. The fundamental class of Deligne-Mumford space is replaced here by a certain solution of the quantum master equation, essentially the “string vertices” of Zwiebach. On the field theory side, the BV operator has an interpretation as the quantised differential on the Fock space for periodic cyclic chains. Passing to homology, something satisfying the master equation yields an element of the Fock space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Conformal Field Theories and Calabi-yau Categories

This paper concerns open, closed, and open-closed topological conformal field theories. We show that the category of open topological conformal field theories, at all genera, is homotopy equivalent to a category of Calabi-Yau A∞ categories. For each such, we show that there is a universal closed TCFT, which is the initial element in the category of compatible open-closed TCFTs. The homology of ...

متن کامل

Quantum Kirwan Morphism and Gromov-witten Invariants of Quotients Ii

This is the second in a sequence of papers in which we construct a quantum version of the Kirwan map from the equivariant quantum cohomology QHG(X) of a smooth polarized complex projective variety X with the action of a connected complex reductive group G to the orbifold quantum cohomology QH(X//G) of its geometric invariant theory quotient X//G, and prove that it intertwines the genus zero gau...

متن کامل

Twisted Gromov–Witten r-spin potential and Givental’s quantization

The universal curve π : C → M over the moduli space M of stable r-spin maps to a target Kähler manifold X carries a universal spinor bundle L → C . Therefore the moduli space M itself carries a natural K-theory class Rπ∗L. We introduce a twisted r-spin Gromov–Witten potential of X enriched with Chern characters of Rπ∗L. We show that the twisted potential can be reconstructed from the ordinary r...

متن کامل

Elliptic Gromov-Witten Invariants And Virasoro Conjecture

The Virasoro conjecture predicts that the generating function of Gromov-Witten invariants is annihilated by infinitely many differential operators which form a half branch of the Virasoro algebra. This conjecture was proposed by Eguchi, Hori and Xiong [EHX2] and also by S. Katz [Ka] (see also [EJX]). It provides a powerful tool in the computation of Gromov-Witten invariants. In [LT], the author...

متن کامل

Stable Spin Maps, Gromov-witten Invariants, and Quantum Cohomology

We introduce the stack M 1/r g,n(V ) of r-spin maps. These are stable maps into a variety V from n-pointed algebraic curves of genus g, with the additional data of an r-spin structure on the curve. We prove that M 1/r g,n(V ) is a Deligne-Mumford stack, and we define analogs of the Gromov-Witten classes associated to these spaces. We show that these classes yield a cohomological field theory (C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005